当前位置:首页 > 教学文档 > 说课稿

《分数的基本性质》说课稿

时间:2024-10-18 17:35:14
《分数的基本性质》说课稿

《分数的基本性质》说课稿

作为一名老师,很有必要精心设计一份说课稿,认真拟定说课稿,那么优秀的说课稿是什么样的呢?下面是小编为大家收集的《分数的基本性质》说课稿,希望能够帮助到大家。

《分数的基本性质》说课稿1

一、教学内容的说明

《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

二、学情分析

学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

三、教学目标

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

2.培养学生观察、比较、分析、概括等方面的能力。

3、通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

四、教学重点、难点

教学重点:

理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点

学生通过猜想和动手验证,抽象概括出分数的基本性质。

五、教法学法的选择

教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

六、教学过程的设计

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“1.创设情境——引发思考2.引出新知——动手实践3.初步感知——引导观察4.发现规律——巩固练习5.课堂小结——加深理解 ”五个环节。

一、创设情境,引发思考

1、上课开始我引入了故事:有一天妈妈给淘气做了一个香喷喷的大蛋糕,蓝猫看见了也想吃。淘气说:我只有一个蛋糕,要不我分给你一些吧,我有三种分法,请你选择一种:

第一种:把蛋糕平均分成2份,送给你其中的一份,也就是这个蛋糕的1/2;

第二种:把蛋糕平均分成4份,送给你其中的2份,也就是这个蛋糕的2/4;

第三种:把蛋糕平均分成8份,送给你其中的4份,也就是这个蛋糕的4/8。

选择哪一种分法吃到的蛋糕最多呢?

同学们,如果你是蓝猫,你会选择哪一种呢?

先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

二、对于分数基本性质的理解

分为3个层次 借助长方形纸条来理解。通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)——总结完善分数的基本性质。

1、借助长方形纸条理解

这里分成两份层次(1)借助直观图理解(2)分析分数理解

(1)借助直观图理解。

首先,引导学生在同样大的长方形纸条上分别表示出、、想一想为什么为什么分的份数不一样,取的份数也不一样可他们最后分的大小却会相同呢?

(2)借助分数理解

在学生清楚的知道了三个分数为什么会相等后,从图在回到抽象的三个分数上,说一说, 他们的分子、分母是怎样变化的。说明白后,明确分的份数就是分母,取得分数就是分子,在板书上改为“分母扩大了两倍、四倍,分子也相应扩大了两倍、四倍,分数大小不变”

2、通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)

总结规律是在大量的直观的数据或练习的基础上实现的。为了给学生便于学生总结,我设计了“你还能举出一个和3/6大小相等的分数吗?你是怎样想的?如果想让分子是9,分母是? 想让分母是18,分子呢?”一方面学生利用了分数的基本性质做了一些基础的题,另一方面在叙述你是怎样想的时候,其实也是对分数基本性质的概括。这样当“用一句话总结你的发现”的时候,在语言叙述上就没有什么障碍了。

3、关于“同时”“相同的数““0除外”的理解

两种预设,在总结出“分数的分子、分母同时乘或除以相同的数,分数的大小不变。”让学生说说自己的理解,如果有有学生提出就上提出的学生说一说,如果没有主动提出,就通过做个练习题,“2/3哪样列式行吗?为什么?”。让学生说一说通过做这两个题你有什么想提醒大家的。

四、巩固练习

根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。其次是稍有变动的,需要结合分数与除法关系完成的变式练习。

最后为了满足优等生的需要还涉及了以下练习

5/9的分母加9,分子加几,分数的大小不变。

板书: 分数的基本性质

1/2==2/4=4/8

分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。

《分数的基本性质》说课稿2

这天我说课的资料是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学过程”五个方面来说课。

一、本课的教学理念有:

1、以学生发展为本,着力强化主体意识。

2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会,变“学数学”为“做数学”。

3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化等数学思想方法。

……此处隐藏26207个字……质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。

三、学情分析

前测:(问卷形式)

问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。

2:试着做一做下面这些题比较大小:

4/7○2/7 1/2○2/4 3/5○9/15

分析:暂无

结论:暂无

四、教学目标及重难点

教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。

教学难点:

理解和掌握分数的基本性质。

解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。

五、教法学法:

教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

六、教学过程

一、迁移旧知.提出猜想

1回忆旧知

活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数除数=

通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

二、验证猜想,建构新知

环节1、 看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。

环节2、 讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2 = 2/4 = 4/8

通过让学生表述怎么判断它们相等的锻炼学生的表达能力。

3、研究规律

第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等( )不相等()

猜想是否成立?

成立( )不成立( )

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

师:分数的基本性质与商不变性质有什么联系?

环节4、质疑完善

3/4 = 3( )/ 4( )

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4= 3X/ 4X(X0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

通过这个环节的练习,进行第一次数学建构。

三、 练习升华

通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、 和 哪一个分数大,你能讲出判断的依据吗?

四、总结延伸

师:这节课学了什么?

师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)

在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。

五、作业p87-1、2

板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

68

34

1216

《《分数的基本性质》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式